Impacts of Automated Vehicles (AVs) on Highway Infrastructure

Abdul Zineddin, Ph.D.
AASHTO Committee on Traffic Engineering

June 17, 2019
Outline

- Background
- Project Goal
- Infrastructure Focus Areas
- Industry Interviews
- Upcoming Workshops
USDOT Automation Policy

- **Automated Driving Systems 2.0 (ADS 2.0): A Vision for Safety (September 2017)**
 - Clarifies Voluntary Safety Self-Assessment process.
 - Emphasizes motor vehicle safety.

- **Automated Vehicles 3.0 (AV 3.0): Preparing for the Future of Transportation (October 2018)**
 - Clarifies multimodal surface transportation.
 - Broadens considerations to reflect multimodal responsibilities (e.g., operations).
Preparing for the Future of Transportation

Principles:

• Prioritize safety.
• Remain technology neutral.
• Modernize regulations.
• Encourage a consistent regulatory and operational environment.
• Prepare proactively for automation.
• Protect and enhance the freedoms enjoyed by Americans.

Source: USDOT
Select Themes

• Greater **Uniformity and Quality** in road markings and traffic control devices would enable automation.

• FHWA should take a **Leadership role** in convening stakeholders to encourage collaboration.

• Certain **Data Elements** about the roadway environment are useful for industry, State, and local DOTs to share and could improve automation operations.

• Conducting **Pilots** and supporting pilot testing are important for facilitating learning and collaboration.

• **Uncertainty** in infrastructure investment and allocation of limited resources are key concerns for State and local agencies.

FHWA Released RFI in March 2018
Automation Has Implications for Roadways

Physical Infrastructure

Roadway Operations

Digital Infrastructure

Programs and Practices
The Federal Highway Administration (FHWA) initiated a national conversation with diverse stakeholders to discuss automated vehicles.

The National Dialogue on Highway Automation is a series of meetings held across the country to facilitate information sharing, identify key issues, and support the transportation community to safely and efficiently integrate automated vehicles into the road network.
National Dialogue Schedule in 2018

<table>
<thead>
<tr>
<th>Month</th>
<th>Event</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>June 7</td>
<td>National Dialogue Launch Workshop</td>
<td>Detroit, MI</td>
</tr>
<tr>
<td>June 26-27</td>
<td>National Workshop 1: Planning and Policy</td>
<td>Philadelphia, PA</td>
</tr>
<tr>
<td>July 12</td>
<td>Automated Vehicle Symposium</td>
<td>San Francisco, CA</td>
</tr>
<tr>
<td></td>
<td>FMCSA-FHWA Truck Automation Listening Session</td>
<td></td>
</tr>
<tr>
<td>August 1-2</td>
<td>National Workshop 2: Digital Infrastructure and Data</td>
<td>Seattle, WA</td>
</tr>
<tr>
<td>September 5-6</td>
<td>National Workshop 3: Freight</td>
<td>Chicago, IL</td>
</tr>
<tr>
<td>October 24-25</td>
<td>National Workshop 4: Operations</td>
<td>Phoenix, AZ</td>
</tr>
<tr>
<td>November 13-15</td>
<td>National Workshop 5: Infrastructure Design and Safety</td>
<td>Texas</td>
</tr>
</tbody>
</table>
Themes from Physical Infrastructure Workshop

- Infrastructure **standards** should be updated to respond to AV technology.
- AV and non-AV **interaction** needs to be understood to ensure safe roadways.
- Automated vehicle **data** can provide new uses for safety and infrastructure management.
- **Communication** to and between stakeholders is critical for safe and successful AV.
- Infrastructure requirements and **funding** needs remain unclear.
GOAL
To develop practicable documentation and webinars to educate and inform DOT stakeholders about AV-related infrastructure needs.

OBJECTIVES
1) To assess and understand the demands and potential impacts of AVs on our current & future infrastructure assets.
2) To guide and assist DOTs on how to determine their “Readiness” for AV use on its highways.
Infrastructure Focus Areas

Highway Infrastructure Categories

Traffic Control Devices
- Barriers, Channelizing Posts, Pavement Markings, Traffic Signs, Traffic Signals, Work Zones

Pavements and Structures
- Asset Management, Condition + Performance, Design, Innovative Technologies, Maintenance, Materials

TSMO and ITS Infrastructure

Multimodal Infrastructure
- Bicycle/Pedestrian Infrastructure, ADA Accessibility, Multimodal Traffic Control Devices, Curb design, Street design, Parking

TSMO = Transportation Systems Management and Operations
ITS = Intelligent Transportation Systems
Key Considerations

• What should DOTs be doing right now with existing infrastructure to prepare for the needs of increasing AV use?
• What will the impacts be of AV use on the existing highway infrastructure, and how does the concept of “state of good repair” play into these impacts?
• Based on input from the AV sector, what will the design and maintenance needs of future highways be?
• How should DOTs be preparing their physical infrastructure for the future needs of potentially high levels of AV usage on the national highway network?
• How should a DOT determine its “Readiness” for AV use on its highways?
Industry Interviews

- ADS Computation (1)
- ADS Sensors (2)
- Tier 1 Auto Supplier (1)
- Heavy truck industry (1)
- OEM (3)
Industry Interviews: Key Observations

- **Implications of Sensor Evolution:** The rapid evolution and regular maintenance needs of sensors favors fleet operations in the near-term and presents challenges to future proofing infrastructure.
- **Quality and Uniformity of Physical Infrastructure:** Physical infrastructure should be well-maintained and consistent, especially with regard to road markings and signage.
- **Digital Information Standards:** Digital information relayed to AVs should be standardized, secure, and specific to AV operational challenges (such as work zones).
- **Urban Fleet Operations:** Urban fleet operations will be an important early application of AV and will offer near-term and non-traditional partnership opportunities between fleet operators and IOOs.
Industry Interviews: Key Observations (cont.)

- **Operational Design Domains**: Original Equipment Manufacturer (OEMs) are responsible for defining their operational design domain (ODD) and assume ultimate responsibility for safe operation within the ODD regardless of Infrastructure Owner Operator (IOO) actions.

- **Connectivity Between Vehicle and Infrastructure**: CV applications such as V2I can alert AVs to the presence of humans, however, industry is not relying on IOO support and is skeptical that V2I deployments will occur widely.

- **IOO Role of Traffic Systems Management and Operations**: AVs may exacerbate congestion in the short term, making it increasingly important that IOOs implement advanced traffic systems management and operations strategies.

- **Freight**: Freight is an early and incremental adopter of lower-level AV with its own path to deployment.

- **Governmental and Institutional Issues**: Clear guidance and policies are needed at the federal level, while interagency and intergovernmental coordination are needed at the state and local levels.
Technical Proposed Approach

- **Framework: Risk, Opportunity, Adaptation and Readiness (ROAR)**
- **Summary of Findings**
 - Literature
 - Industry Interviews
- **Stakeholder Engagement**
 - Workshop findings (AASHTO and AVS)
- **Risk**
 - Risk management protocol
- **Opportunity**
 - List opportunities and talk about likelihood and contributing factors
- **Adaptation**
 - Sort by categories (e.g., data and physical infrastructure)
- **Readiness**
 - Checklist of things for IOOs to do
Workshop Updates

• **AASHTO Committee on Maintenance**
 – Date: Wednesday, July 17
 – Location: Grand Rapids, MI
 – Duration: 2 hours

• **AV Symposium**
 – Date: Thursday, July 18
 – Location: Orlando, FL
 – Requested duration: 2 hours
Research Highlights

- Cooperative Automation Research Mobility Applications (CARMA) Research Program: https://highways.dot.gov/research/research-programs/operations/CARMA

- Data for AV Integration (Work Zone Data Exchange) https://www.its.dot.gov/research_areas/enterprise.htm

- CV Pilot Deployment: https://www.its.dot.gov/pilots/

Abdul Zineddin, Ph.D.
Transportation Specialist
Office of Safety R&D, FHWA
Abdul.Zineddin@dot.gov
202-493-3288